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Abstract 

 
Ventriglia, Rachel Martins; Bastos, Leonardo dos Santos Lourenço 

(Advisor); Hamacher, Silvio (Co-Advisor). Uncertainty and scenario 

reduction in material resources allocation of offshore rigs: a machine 

learning approach. Rio de Janeiro, 2023. 96p. Dissertação de Mestrado - 

Departamento de Engenharia Industrial, Pontifícia Universidade Católica do 

Rio de Janeiro. 

 

Material resource planning is an integral part of supply chain management. 

The tasks in the supply chain need materials and resources to be executed, thus, 

allocating resources correctly is an important part of task scheduling. Specifically, 

construction tasks for subsea wells require the use of resources, such as rigs, and 

planning the schedule of these operations involves the sizing of various materials 

and services necessary for their execution. This study is motivated by real-life 

scheduling planning from a large Oil and Gas company that estimates the demand 

for materials and services stochastically due to the uncertainties associated with the 

tasks in their start dates and durations. The calculation of the demand is subject to 

the current schedule that the company has and a set of rules that indicate allocation 

conditions, logistics parameters, disembarking conditions, and dependencies to 

allocate the tools and services needed for each task and estimate their quantity and 

how many days they will be used. These sets of tools and rules can change 

depending on the user and their operation knowledge. Additionally, the company 

uses a large number of scenarios, which results in extremely high computational 

times and impacts operational decision-making. In this context, scenario reduction 

could assist the company in its decision-making process. The methodology 

proposed in this work evaluates and identifies representative scenarios of 

uncertainty in strategic planning schedules of offshore rigs in order to reduce the 

number of scenarios used in the calculation of the demand for tools and services. 

With the use of unsupervised techniques, such as k-means and hierarchical 

clustering, we identified a subset with the most representative scenarios for the 

scenario reduction. The Wasserstein Distance and graphical visualization were used 

to measure the representativeness of the selected scenarios and find the best subset. 

Moreover, the scenario reduction subset was also used to analyze the impact of the 

reduction in the demand calculation. The Agglomerative Clustering with Ward 

Linkage (hierarchical clustering) obtained the best clustering evaluation and 

representativeness metrics, resulting in a selected subset of 782 scenarios. To find 

a minimal representative set of scenarios, the best clustering method and the 

Wasserstein Distance were used, resulting in a number of 343 scenarios. This 

presents a reduction of 84% in the execution time of the demand calculation, with 

the highest error of 11% in the demand calculation. 

 

Keywords 
Well Construction Tasks, Offshore Rigs, Scenario Reduction, Clustering.  



 
 

Resumo 

Ventriglia, Rachel Martins; Bastos, Leonardo dos Santos Lourenço 

(Advisor); Hamacher, Silvio (Co-Advisor). Análise de incertezas e redução 

de cenários em alocação de recursos de tarefas de sondas marítimas: uma 

abordagem de machine learning. Rio de Janeiro, 2023. 96p. Dissertação de 

Mestrado - Departamento de Engenharia Industrial, Pontifícia Universidade 

Católica do Rio de Janeiro. 

 

O planejamento de recursos materiais é uma parte importante do 

gerenciamento da cadeia de suprimentos. As tarefas na cadeia de suprimentos 

precisam de materiais e recursos para serem executadas e, portanto, alocar os 

recursos corretamente é uma parte importante do planejamento de tarefas. 

Especificamente, as tarefas de construção de poços submarinos requerem a 

utilização de recursos, como sondas, e o planejamento do cronograma dessas 

operações envolve o dimensionamento de diversos materiais e serviços necessários 

para sua execução. Este estudo é motivado pelo planejamento de programação real 

de uma grande empresa de Óleo e Gás que estima estocasticamente a demanda por 

materiais e serviços devido às incertezas associadas às tarefas em suas datas de 

início e durações. O cálculo da demanda varia de acordo com o cronograma atual 

que a empresa possui e a um conjunto de regras que indicam condições de alocação, 

parâmetros logísticos, condições de desembarque e dependências para alocar as 

ferramentas e serviços necessários para cada tarefa e estimar sua quantidade e 

quantos dias em que serão usados. Este conjunto de ferramentas e regras pode 

mudar dependendo do usuário e de seu conhecimento operacional. Além disso, a 

empresa utiliza um grande número de cenários, o que resulta em tempos 

computacionais extremamente altos e impacta a tomada de decisões operacionais. 

Nesse contexto, a redução de cenários poderia auxiliar a empresa no seu processo 

de tomada de decisão. A metodologia proposta neste trabalho avalia e identifica 

cenários representativos de incerteza nos cronogramas de planejamento estratégico 

de sondas offshore, a fim de reduzir o número de cenários utilizados no cálculo da 

demanda por ferramentas e serviços. Com a utilização de técnicas não 

supervisionadas, como k-means e agrupamento hierárquico, foi identificado um 

subconjunto com os cenários mais representativos para a redução de cenários. A 

Distância de Wasserstein e a visualizações gráficas foram utilizadas para calcular a 

representatividade dos cenários selecionados e encontrar o melhor subconjunto. 

Além disso, o subconjunto de cenários proveniente da redução também foi utilizado 

para analisar o impacto da redução no cálculo da demanda. O Clustering 

Aglomerativo com Ward Linkage obteve os melhores resultados de clusterização e 

representatividade, resultando em um subconjunto de redução de 782 cenários. Para 

encontrar um conjunto mínimo representativo de cenários, foi utilizado o melhor 

método de agrupamento, junto com a Distância de Wasserstein, e por fim obtido 

um número de 343 cenários. Isto apresenta uma redução de 84% no tempo de 

execução do cálculo da demanda, com o erro maior de 11% no cálculo da demanda. 
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1  
Introduction 

Oil Exploration and Production (E&P) is a fundamental part of the supply 

chain in the Oil and Gas industry. It involves complex technical operations that can 

take long periods to be completed and require significant investments (SUSLICK; 

SCHIOZER; RODRIGUEZ, 2009, DEVOLD, 2013). Due to the high costs and 

complexity of the operations, it is necessary that the planning is done correctly, 

considering the tools required to support decision-making involving project 

planning systems and resource scheduling (LI; MCMAHON, 2007). 

One of the most critical phases of Oil E&P is the construction and 

maintenance of wells, which depend mainly on oil platforms. These platforms are 

typically expensive and scarce of resources, with daily rates ranging between 

US$50,000 and US$500,000, depending on the platform, market, and operational 

specifications (KAISER; SNYDER, 2013, OSMUNDSEN; ROLL; TVETERÅS, 

2010). Companies hire platforms to perform important well operations, such as 

drilling, assessment, completion, and workover, which are organized based on a 

schedule.  

These tasks require materials and services to be executed, which must be 

allocated in the best possible way to carry out the operation. Therefore, planning 

rigs' schedules and operations involves robust resource planning for both materials 

and services of tasks. Moreover, specialized contracts of materials and services for 

well construction tasks can go from US$2M to US$1B. 

To support the planning of these contracts, it’s important to correctly estimate 

the demand for materials and services, considering the uncertainty of the operation, 

which can involve the task durations, availability of materials, task start dates, and 

such. Tasks are subject to two main uncertainties: the start dates, which can begin 

earlier or later than initially planned, and their duration, which can take longer or 

shorter than what was originally scheduled. 

This work is motivated by a problem of sizing the contracts of tools and 

services for well construction tasks performed by offshore rigs of a large Oil and 
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Gas company in Brazil. Currently, these tasks are subject to uncertainties, which 

can impact their start dates and duration, affecting their planning. To deal with the 

risks and uncertainties of the rig schedule, the company calculates the demand for 

tools and services stochastically, considering different scenarios of the rig schedule. 

From the risk assessment made by the company, considering uncertainties in the 

execution of operations (in this case, tasks), which can affect their durations and 

start dates, many scenarios are generated, which results in long computational times 

for the adequate calculation of tools to guarantee the desired service level. In 

addition, the company has little knowledge about the differences between the 

considered scenarios and how they impact the estimated demand for each tool in 

the operation. 

In this context, scenario reduction methods could assist the company in its 

decision-making process and in better understanding the instances used. They are 

used to approximate the characteristics of the original scenario set by using a subset. 

Applications such as the dispatch of electric vehicles and online reconfiguration of 

networks involve a large number of random variables and can be favored by 

scenario reduction (LI et al., 2022a).  In the context of oil and gas, Meira et al. 

(2016) used an optimization-based method to find the most representative models 

in oil fields. 

Despite the extensive literature on resource allocation problems and scenario 

reduction methods, little is known about applications of this nature in the context 

of oil and gas, where resources have high added value, more specifically with the 

allocation of materials and services to tasks construction of marine wells. 

 

1.1  
Objectives 

This study aims to reduce the number of scenarios used to calculate the 

demand for materials and services and to find the most representative ones using 

clustering-based methods and statistical analysis. 

As complementary objectives, the list the following: 

i. Survey the literature on the main methods for reducing scenarios. 

ii. Analyze the generated scenarios and their respective decisions in 

terms of schedule and demand. 
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iii. Develop a methodology based on machine learning for reducing 

scenarios to be incorporated into the decision-making process. 
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2  
Theoretical Foundation 

This section provides important concepts and works in the literature about the 

problem. First, we offer an overview of works that approach uncertainty in Oil 

Exploration and Production and Scenario Reduction methods. Then, works that use 

these methods in the oil E&P context. 

 

2.1  
Uncertainty in Oil Exploration & Production 

Due to the high costs and complexity of offshore rig operations in well 

construction tasks, it is necessary that the planning of these activities is done 

correctly, providing the necessary materials and services so that the tasks can be 

performed within the planned schedule. In addition to being sized, the materials 

must be available at the right time for the execution of the task. Thus, uncertainties 

in carrying out the task can result in high variability in the demand for tools, and 

the unavailability of the resource implies delays and operating costs for the rig 

responsible. 

In the Oil E&P context, there are uncertainties to be considered in different 

aspects, such as geological concepts, the structure, the reservoir seal, or the 

hydrocarbon charge; the economic evaluations, in costs, oil price, technology, and 

probability of finding and producing economically viable reservoirs; as well as 

development and production, which take into consideration infrastructure, 

production schedule, operational costs, reservoir characteristics, and so on. In 

addition to the incorporation of uncertainties, there are also important decisions 

concerning the allocation of scarce resources and long horizons (SUSLICK; 

SCHIOZER; RODRIGUEZ, 2009). 

According to Santos, Hamacher, and Oliveira (2021), uncertainty can be 

presented in optimization methods, such as simulation and optimization models, 

when uncertain parameters are simulated and then used in the optimization model 

or in the modeling approach, such as optimization under uncertainty. Bassi, Ferreira 



  19 

Filho, and Bahiense (2012) used the first approach to minimize opportunity costs 

within certain operating constraints. They approach the problem of planning and 

scheduling a fleet of offshore oil rigs, considering the uncertainty in the service 

time. 

Regarding resource planning and materials requirements for the rig 

scheduling problem, Marchesi et al. (2019) proposed a mixed-integer linear 

programming model for the construction of wells to minimize task tardiness and 

earliness, taking into consideration rigs and equipment.  Drouven and Grossmann 

(2016) also propose a mixed-integer linear programming model, in this case for the 

shale gas development, maximizing the net presented value, defining which rigs, 

crews, and equipment will perform the drilling. 

Resource planning is related to the rig scheduling problems that consider 

other resources when planning well operations. There has been a slight growth in 

studies considering resources such as offshore support vessels, lighter vessels, 

crews, and equipment (SANTOS; HAMACHER; OLIVEIRA, 2021). 

 

2.2  
Scenario Reduction Methods 

Scenario analysis usually involves scenario generation and reduction. The 

first one creates scenarios from an original dataset, and the second one aims to 

reduce the scale of the scenario dataset, preserving its original characteristics (LI et 

al., 2022a). Li et al. (2022a) categorize the scenario reduction methods into four 

categories: distance-based methods, scenario tree-based methods, optimization 

model-based methods, and clustering-based methods. In this work, we focus on 

clustering-based methods. Table 1 shows the characteristics, advantages, and 

disadvantages of each method. 
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Table 1: Scenario Reduction methods. Source: (LI et al., 2022a) 

Category Approach Application Advantage Disadvantage 

Scenario 

distance-based 

methods 

Distances among 

scenarios 

Measure the 

dissimilarity 

between scenario 

sets 
Measurement of 

the dissimilarity 

is clear. Efficient 

to the scenario set 

whose scale is 

not too large. 

Only quantify the 

mathematical 

properties and 

ignore the feature 

of variables in the 

real problem. The 

number of 

reserved 

scenarios should 

be determined in 

advance. 

Heuristic 

algorithms 

The scenario set 

is measured by a 

distance. 

Mathematical 

programming 

algorithms 

The scenario set 

is measured by a 

criterion. 

Scenario tree-

based methods 

Scenario tree-

based method 

Spatiotemporally 

correlated 

scenario set 

The relationship 

between 

scenarios is 

reserved after the 

reduction 

Reduction of 

large-scale 

scenario sets is 

time-consuming 

Optimization 

model-based 

methods 

Single objective 

models 

Only one 

criterion is 

considered in the 

reduction 
More precise and 

optimal reduction 

strategies can be 

obtained 

Computational 

complexity is 

hardly avoided 

when the scale of 

scenarios is large 
Multiple 

objective models 

More than one 

criterion is 

considered in the 

reduction. 

Clustering-based 

methods 

Partitioning 

clustering 

Select the 

"representative 

scenarios" from 

the scenario set 

Efficiently reduce 

the scale of the 

scenario set 

The quality of 

reserved 

scenarios is 

sensitive to 

clustering criteria 

and the number 

of clustering 

centers. 

Hierarchical 

clustering 

 

As we can see in Table 1, each method is used for different applications. 

Scenario tree-based methods are used for spatiotemporally correlated scenario sets 

because they preserve the relationship between the scenarios. For this reason, 

Growe-Kuska, Heitsch, and Romisch (2003) used it in power management 

problems to reduce the number of nodes in individual scenarios by modifying the 

tree structure and bundling similar scenarios. 

 Optimization model-based methods involve single or multiple objective 

models and result in an optimal reduction. However, they can be computationally 

complex when the scale of the scenarios is large. Gil, Aravena, and Cardenas (2015) 

propose a stochastic mixed-integer programming formulation for deciding future 

generation investments considering uncertainty on the hydrological resource and 

use an optimization model to reduce the yearly hydropower output scenarios to 

make the optimization problem tractable. 
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Distance-based methods involve distance, heuristic, and mathematical 

programming algorithms and are applied to measure the distance between scenario 

sets, being efficient to scenarios whose scale is not too large. 

Finally, clustering-based methods are used to select the representative 

scenarios of the set, being able to efficiently reduce the scale of the scenario set. 

Sumaili et al. (2011) applied clustering techniques for wind power scenario 

reduction, specifically the mean shift clustering, and were able to find a reduced set 

of representative scenarios associated with their probability of occurrence. 

According to Li et al. (2022a), even though, for clustering-based methods, the 

quality of selected scenarios is sensitive to clustering criteria and the number of 

clustering centers, our focus is selecting the most representative scenarios, which is 

the subset that preserves the statistical characteristics of the original dataset, and for 

this reason, we chose this method for this study. 

 

2.2.1  
Clustering-based methods 

Clustering techniques are unsupervised machine learning algorithms that 

group data according to intrinsic characteristics. In scenario reduction analysis, 

grouping is used to obtain representative scenarios from the data set. Commonly 

used clustering algorithms include partitioning clustering and hierarchical 

clustering. 

Partitional Clustering aims to split the data and group the centroids of each 

group as the representative scenarios, and this approach includes methods such as 

K-Means (MACQUEEN, 1967) and K-Medoids (KAUFMAN; ROUSSEEUW, 

2005). 

The K-Means is a method to partition a dataset into a specific number of K 

clusters that are distinct and non-overlapping. The algorithm assigns each 

observation of the data set to exactly one of the clusters, considering that the within-

cluster variation - how much observations within a cluster differ from each other - 

should be as small as possible. This is measured by a distance metric, most 

commonly the Euclidean distance (JAMES et al., 2023). 

The optimization problem that defines the K-Means clustering is to minimize 

the within-cluster variation. When this metric is the Euclidean distance, it can be 
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written as Equation (1, where 𝐶1, … , 𝐶𝐾 denote the sets containing the indices of the 

observations in each cluster and |𝐶𝑘| is the number of observations in the k-th 

cluster and (𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2
 is the squared Euclidean distances between the 

observations in the the k-th cluster (JAMES et al., 2023). 

𝐦𝐢𝐧
𝑪𝟏,…,𝑪𝒌

{∑
𝟏

|𝑪𝒌|
𝑲
𝒌=𝟏 ∑ ∑ (𝒙𝒊𝒋 − 𝒙𝒊′𝒋)

𝟐𝒑
𝒋=𝟏𝒊,𝒊′∈𝑪𝒌

}  (1) 

 

In other words, this means that the K-Means aims to partition the observations 

into K clusters in a way that the total within-cluster variation, summed over all the 

clusters, is as small as possible. James et al. (2023) describe the algorithm to solve 

this problem as the following:  

1. Randomly assign a number from 1 to K to each of the observations 

as an initial solution. 

2. Iterate until the cluster assignments stop changing. 

In step number 2, the centroid is computed for each of the K clusters, given a 

vector of the feature means for the observations in the cluster. Then, each 

observation is assigned to the cluster whose centroid is the closest, according to the 

distance metric (JAMES et al., 2023). 

One of the limitations of this method is the initialization since the first step is 

a random assignment, and the algorithm finds a local optimum. Therefore, it is 

sensitive to the initial centroid locations. Moreover, it is also sensitive to the 

presence of outliers in the data since the mean used to calculate the centroids is not 

a robust statistic (WU et al., 2008). 

Another partitional clustering method is the K-Medoid. It is similar to the K-

Means, but the centroids (“medoids”) belong to the data being clustered. The 

medoid is located in the center of the cluster and also at the smallest sum of the 

distance to the other points. It uses the partitioning around medoids algorithm 

(PAM), and it minimizes the sum of the dissimilarities between the object and their 

closest object in the cluster, also known as the absolute error function (SUREJA; 

CHAWDA; VASANT, 2022). 
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The authors summarized the K-Medoids algorithm as follows: 

1. Find the initial representative K centroids of the data randomly. 

2. Assign each data point to its closest medoid. 

3. Update: 

a. Select a non-medoid object randomly. 

b. Swap medoid with a data point. 

c. Compute the total cost. 

d. Select the medoid with the lowest cost for the next step. 

4. Stop if the termination criteria are satisfied or go back to step 2 and 

repeat. 

Hierarchical clustering can be divided into agglomerative and divisive. 

Agglomerative clustering is the most common type of hierarchical clustering, and 

it results in a dendrogram with the grouping of patterns and similarity levels at 

which the clusters change. This type of graph is typically described as an upside-

down tree and is built from the leaves up, combining clusters to the trunk. Each leaf 

of the dendrogram corresponds to an observation in the data, and higher up the tree, 

some leaves fuse into branches, which means that the observations are similar to 

each other. The height of the fusion indicates the similarity and determines the 

number of clusters in the data (JAMES et al., 2023). 

Figure 1 shows an example of a dendrogram, where (A) shows the graph with 

all of the observations, and (B) and (C) shows the results of the clustering method 

based on a cut in the height. The higher cut in (B) results in 2 clusters, while the cut 

in (C) results in 3 clusters (JAMES et al., 2023). 
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Figure 1: Example of dendrogram with (A) all its observations, (B) the clustering results 

with a higher cut in similarity, and (C) the clustering results with a lower cut in similarity. Adapted 

from: (JAMES et al., 2023)  

The agglomerative clustering algorithm begins computing the similarity 

matrix with the distance between each pair of clusters and treats each pattern as a 

cluster. The Euclidean distance could be used as a distance measure for this. Then, 

it finds the most similar pair of clusters using the similarity matrix, merges them 

into one, and updates the matrix afterward. It stops after all the patterns are in one 

cluster. The divisive approach, on the other hand, begins with a single cluster of all 

the objects and splits the clusters at each step  (JAIN; MURTY; FLYNN, 1999). 

Hierarchical methods have a disadvantage in that they cannot repair what was 

done in previous steps, which means that the agglomerative method is not able to 

join two objects once they are separated, and the divisive method can’t split two 

objects that were united. This results in shorter computational times but less 

flexibility for the algorithm since it is unable to correct wrong decisions 

(KAUFMAN; ROUSSEEUW, 2005). 

For agglomerative clustering, there are different ways to define the 

dissimilarity between clusters, given by the linkage, which resulted in different 

algorithms. Common types of linkage are Single, Complete, Average, Centroid, and 

Ward Linkage. The Single linkage uses the minimal inter-cluster dissimilarity, 

computing the minimum distance between all pairs of patterns from the two 

clusters. The Complete linkage is the opposite; it uses the maximal inter-cluster 
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dissimilarity and computes the maximum distance. According to Jain, Murty, and 

Flynn (1999), these are the most popular algorithms for agglomerative clustering. 

For the Average linkage, the algorithm uses the mean inter-cluster 

dissimilarity, computing the mean distance between the observations in a cluster. 

Centroid linkage uses the dissimilarity between the centroid of the clusters, but it 

has a disadvantage: an inversion can occur with this linkage, where two clusters are 

fused below the individual clusters of the dendrogram, leading to difficulties in 

visualization and interpretation of the dendrogram (JAMES et al., 2023). 

Finally, the Ward Linkage, also known as the minimum-variance linkage, 

calculates the dissimilarity between two clusters based on the Euclidean distance 

between their centroids multiplied by a factor (KAUFMAN; ROUSSEEUW, 2005). 

 

2.2.1.1  
Clustering evaluation metrics 

Cluster validation is an important part of this analysis, and metrics are used 

to evaluate the performance of the cluster methods described in the last section. The 

cluster validation techniques can be classified as internal and external validation. 

The external focus is on validating a partition by comparing it with the correct 

partition, and the internal focus is on validating a partition by examining just the 

partitioned data (ARBELAITZ et al., 2013). 

Since clustering is an unsupervised machine-learning approach, the correct 

partition is often not available for comparison. In this case, some metrics are most 

used, such as the Davies–Bouldin score (DAVIES; BOULDIN, 1979) or the 

Calinski–Harabasz score (CALINSKI; HARABASZ, 1974). 

The Davies-Bouldin (DB) score is the average similarity between each cluster 

and its most similar one. It is used to estimate the cohesion based on the distance 

from the points in a cluster to its centroid and the separation based on the distance 

between centroids. Since it is preferable that clusters have the minimum possible 

similarity to each other, the goal is to minimize this score (HALKIDI, 2001). 

This metric is defined as: 

𝑫𝑩(𝑪) =
𝟏

𝑲
∑ 𝐦𝐚𝐱

𝒄𝒍𝝐𝑪\𝒄𝒌

{
𝑺(𝒄𝒌) + 𝑺(𝒄𝒍)

𝒅𝒆(𝒄𝒌̅̅ ̅, 𝒄�̅�)
}

𝒄𝒌𝝐𝑪

 (2) 
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where 𝑥𝑖 is an object of a dataset X with N features (𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}), 𝑐𝑘 

and 𝑐𝑙 are clusters from a partition in X into K groups (𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}, 𝑐�̅� and 

𝑐�̅� are its centroids and 𝑆(𝑐𝑘) = 1 |𝑐𝑘|⁄ ∑ 𝑑𝑒(𝑥𝑖, 𝑐�̅�)𝑥𝑖 𝜖 𝑐𝑘
, where 𝑑𝑒(𝑥𝑖, 𝑐�̅�) is the 

Euclidean Distance between objects 𝑥𝑖 and 𝑐�̅� (ARBELAITZ et al., 2013). 

The Calinski-Harabasz (CH) score estimates the cohesion of the clustering 

based on the distances from the points in the cluster to its centroid. The separation 

is measured by the distance from the centroids to the global centroid (ARBELAITZ 

et al., 2013). It is defined as: 

 

 

𝑪𝑯(𝑪) =
𝑵 − 𝑲

𝑲 − 𝟏

∑ |𝒄𝒌|𝒅𝒆(𝒄𝒌̅̅ ̅, �̅�)𝒄𝒌𝝐𝑪

∑ ∑ 𝒅𝒆(𝒙𝒊, 𝒄𝒌̅̅ ̅)𝒙𝒊𝝐𝒄𝒌𝒄𝒌∈𝑪
 (3) 

 

Where �̅� is the centroid of dataset X and 𝑑𝑒 is the Euclidean Distance of the 

objects, following the same notation as Equation (2). 

The Silhouette Coefficient, proposed by Rousseeuw (1987), also used as a 

validity metric, was a graphical display for partition techniques. Each cluster was 

represented by a silhouette based on the comparison of its tightness and separation, 

and it showed which objects were within their cluster and which were in between 

clusters. 

It is a normalized summation-type index, where the clustering cohesion is 

measured based on the distance between all the points in the same cluster, and the 

separation is based on the nearest neighbor distance (ARBELAITZ et al., 2013). It 

is defined as: 

 

𝑺𝒊𝒍(𝑪) = 𝟏 𝑵⁄ ∑ ∑
𝒃(𝒙𝒊, 𝒄𝒌) − 𝒂(𝒙𝒊, 𝒄𝒌)

𝐦𝐚𝐱 {𝒂(𝒙𝒊, 𝒄𝒌), 𝒃(𝒙𝒊, 𝒄𝒌)}
𝒙𝒊𝝐𝒄𝒌𝒄𝒌∈𝑪

  (4) 

 

where 𝑎(𝑥𝑖, 𝑐𝑘) = 1 |𝑐𝑘|⁄ ∑ 𝑑𝑒(𝑥𝑖, 𝑥𝑗)𝑥𝑗∈𝑐𝑘
 and 𝑏(𝑥𝑖, 𝑐𝑘) =

min
𝑐𝑙∈𝐶\𝑐𝑘

{1 |𝑐𝑙| ∑ 𝑑𝑒(𝑥𝑖, 𝑥𝑗)𝑥𝑗∈𝑐𝑙
⁄ }, following the same notations as Equation (2). 
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2.2.1.2  
Scenario Representativeness metrics 

Some clustering techniques use distance measures in their method to calculate 

the distances between clusters centroids. The K-Means, as mentioned before, uses 

the Euclidean Distance in the minimization of the within-cluster variation. 

Moreover, in the context of Scenario Reduction, distance measures can be used 

alongside clustering methods as an auxiliary tool, such as the Euclidean distance, 

as mentioned before. This section defines the scenario representativeness metric 

used in this work. 

According to Panaretos and Zemel (2019), Wasserstein (W) distances are 

metrics between probability distributions that are inspired by the problem of 

optimal transportation. These distances are used in various problems, from fluid 

mechanics to optimization and statistics. The p-Wasserstein distance, also known 

as the Kantorovich or “earth moving” distance, between probability measures 𝜇 and 

𝜈 is defined as: 

𝑾𝒑(𝝁, 𝝂) = 𝐢𝐧𝐟
𝑿~𝝁
𝒀~ 𝝂

(𝔼‖𝑿 − 𝒀‖𝒑)
𝟏
𝒑, 𝒑 ≥ 𝟏  (5) 

Besides the Wasserstein distance, bootstrap (EFRON, 1979) was used to 

obtain a confidence interval for the results obtained in this work. This resampling 

method is mostly used to provide a measure of the accuracy of a parameter estimate 

or of a given selection statistical learning method. The procedure involves randomly 

selecting n observations of a dataset to produce a bootstrap dataset, and the 

sampling is performed with replacement and repeated B times (where B is a very 

large value). This generates B different bootstrap (resampled) datasets with 

corresponding estimates (JAMES et al., 2023). 

In this study, we used the percentile bootstrap to obtain the confidence 

interval of the mean absolute percentage error in the calculation of the demand for 

tools and services. According to Efron and Tibshirani (1986), defining 𝜃 as an 

unknown parameter, this method uses the parametric bootstrap cumulative 

distribution function (cdf) of 𝜃∗, defined by Equation (6): 
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�̂�(𝒔) = 𝐏𝐫𝐨𝐛∗{�̂�∗ < 𝒔}  (6) 

Where Prob∗ is the probability computed according to the bootstrap 

distribution of 𝜃∗.  The percentile method interval takes 𝜃 ∈ [�̂�−1(𝛼), �̂�−1(1 − 𝛼)] 

as am approximate 1 − 2𝛼 central interval for 𝜃. In other words, this method is the 

interval between the 100 ∙ α, and 100 ∙ (1-α) percentiles of the bootstrap distribution 

of 𝜃. The percentile interval endpoints are described in Equation (7) (EFRON; 

TIBSHIRANI, 1986). 

𝜽𝒑[𝜶] ≡ �̂�−𝟏(𝜶)  (7) 

 

 

2.2.2  
Applications 

Scenario reduction methods play an important role in problems that use a high 

number of scenarios, impacting the computational execution time and, 

consequently, the speed of decision-making. Chapaloglou et al. (2022), for 

example, consider the generation of uncertainty scenarios for energy storage sizing 

problems in isolated electrical systems. The study cites scenario reduction as an 

important step due to the constraints that make the problem computationally 

intractable and proposes a scenario generation methodology that selects minimal 

subsets of scenarios, using the Kantorovich distance to rank the scenarios and a K-

Means to select them. The statistical quality of the scenarios is guaranteed by 

performing bootstrap to select the number of clusters and tests to monitor the 

statistical properties of the subsets. This is incorporated into the optimization 

problem, allowing them to explore an optimized combinatorial space of different 

uncertainty results. 

Li et al. (2022b) use scenario reduction in the multiyear planning problem for 

the integration framework that combines distributed energy systems and electric 

vehicle charging in a neighborhood business center in Beijing. They propose a new 

data-driven method using real meteorological data to generate loading scenarios 

and use elbow-criterion clustering methods to perform the scenario reduction. 

Abouelrous, Gabor, and Zhang (2022) propose a clustering-based reduction 

of scenarios applied to the inventory optimization problem for a retailer facing 
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online and in-store stochastic demand in a fixed-length sales season. The method 

proposed uses a non-pre-established number of clusters, giving greater flexibility 

than traditional clustering methods. 

Hu and Li (2019) present an optimal scenario reduction method based on a 

new optimization framework to eliminate redundant initial scenarios using the 

concept of loss of correlation.  Okada et al. (2019) used machine learning 

techniques such as multidimensional scaling and hierarchical clustering analysis to 

reduce the number of scenarios based on the Euclidean distance between simulation 

grids. 

 

2.3  
Scenario Reduction Methods in Uncertainty in Oil Exploration & 
Production 

In the context of oil and gas, Mahjour et al. (2021) studied a reservoir 

development problem and argued that the scenario reduction technique with 

distance-based clustering with a simple correspondence coefficient can be used 

with other models, preserving representativeness. The authors applied unsupervised 

machine learning, considering different adjacency matrix constructions, 

dimensionality reductions, and clustering and sampling algorithms to generate 

several sets of representative geological realizations. The best algorithms for the 

UNISIM-I-D benchmark case under flooding were Hausdorff, IsoMap, and 

hierarchical clustering with Ward Linkage (MAHJOUR et al., 2022). 

More specifically, in the context of oil exploration and production, Meira et 

al. (2016) proposed a methodology to identify representative scenarios in oil fields. 

For this, they used a mathematical function that modeled representativeness and an 

optimization tool to identify them, called RMFinder. Complementing this work, 

Meira et al. (2020) proposed an extension of the RMFinder technique to improve 

the reduction of the number of scenarios used in oil field decision-making. There 

are several uncertainties associated with this process, and therefore, many scenarios 

needed to be analyzed, which was time-consuming. Scenario reduction was 

modeled as a multicriteria optimization problem, and the number of representative 

models ranged from 1 to 25 in the performed experiments. 

In the context of allocating resources for well-construction tasks performed 

by offshore rigs and calculating the stochastic demand for these tools and services, 
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Vieira (2021) proposed a methodology for selecting scenarios using the classic Set 

Covering model inspired by the forward selection method. It consisted of obtaining 

the main characteristics of the scenarios, calculating the distances between each 

other and the graph characterization, and pruning the graph to find a scenario subset. 

The results of the demand calculation of the scenarios selected by the Set Covering 

model in comparison to the original set show that there was only a 5% assertiveness 

loss using the scenario reduction subset, with a reduction of 91% in terms of data 

processed. The model was solved using an exact algorithm and a heuristic 

algorithm. 

Even though there are studies that use machine learning for scenario reduction 

in the context of oil production and exploration, to the best of our knowledge, few 

of them focused on applying machine learning techniques in this context, 

specifically to the problem of allocating materials and services of well construction 

tasks performed by rig schedules. 

 



3  
Methodology 

This chapter presents the problem understanding, data preparation, and 

methods for this work based on the life cycle of data science. The methods and steps 

followed are presented in Figure 2. 

 

 

Figure 2: Methods for the Scenario Reduction Analysis 

 

The process begins with problem understanding, which involves 

comprehension of the context, motivation, and objective of the analysis. This is 

done through meetings and interviews with managers and company operators. 

Then, the data is extracted from the company’s database, followed by the 

visualization of the data. Imputation is performed if necessary. Feature engineering 

is used to create relevant features for our analysis, and then feature selection is 

applied. A correlation analysis was performed, which contributed to the selection 

of the features for the final database. In the data modeling step, we performed the 

scenario reduction and validation of the results. In the clustering methods step, we 

used partitional and hierarchical clustering methods to perform the scenario 

reduction and used evaluation metrics to analyze the results. Then, a validation was 

performed. The statistical validation used the Wasserstein Distance to measure the 

goodness of fit of each feature and then the visualization of the results to confirm 

whether the reduction found a representative subset of scenarios. Lastly, we 

performed an output analysis. The modeling part represents the internal cycle of 

data science and can be repeated if necessary. The last step consists of finding the 
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minimal representative subset of scenarios, using the best method from the step 

before, and analyzing the results. The description of each step is detailed below. 

 

3.1  
Problem Understanding 

The problem addressed in this work is the sizing of tools and service contracts 

for marine well construction tasks performed by offshore rigs of a large oil and gas 

company. This company needs to execute the planning of the tasks carried out by 

offshore rigs, which includes the resource planning for both tools and services. 

To support the planning, a decision-making support tool is used to estimate 

the demand for tools and services, considering the uncertainty of the operation. 

These tasks are subject to uncertainties, which can impact their start date or 

duration. This means that the tasks can begin at an earlier or later date and have a 

larger or smaller duration than what was originally planned. 

Moreover, the calculation of the demand is subject to the current schedule 

that the company has and a set of rules that indicate allocation conditions, logistics 

parameters, disembarking conditions, and dependencies to allocate the tools and 

services needed for each task and estimate their quantity and how many days they 

will be used. These groups of tools and sets of rules can change depending on the 

user and their operation knowledge. Figure 3 shows the workflow of the demand 

calculation in the decision-making support tool. 

 

 

Figure 3: Workflow of the demand calculation 

These sets of rules are important and mandatory for calculating the demand 

for tools and services, as they provide information necessary for this calculation, 

such as the number of tools needed in each task, embark and disembarking durations 

of tools, and dependency relationships between them. 
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The allocation conditions are the rules that indicate the quantity of the tool to 

be allocated per task and the probability of needing the tool for the execution of the 

task. This allocation is defined by the type of activity, but there can be exceptions 

where it can be defined by other factors, such as the location where the task will be 

executed or the type of rig. Figure 4 shows an example of how this rule translates 

to the calculation of the demand. 

 

Figure 4: Example of allocation condition and demand calculation 

The logistics parameters include the definition of the duration of embarking 

and disembarking the tools and the duration of technical services. These services 

include assembly, disassembly, and maintenance time, and also how the first two 

are defined. The assembly time can happen before or after loading, and the 

disassembly time can happen before or after unloading. The duration of embarking 

and disembarking the tools is defined by the oil basin. 

The disembarking conditions define the criteria for staying at the location and 

maintenance, disembarking, and duration of use of the tool in an activity or 

installation and removal at the location. The first criterion defines whether the 

resource remains installed at the location after the rig is demobilized (for example, 

a temporary abandonment plug). If this is not applicable, it is necessary to inform 

the disembarking criteria. 
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Lastly, the dependence conditions are the set of rules that establish the 

relationship between tools. Sometimes, more than one tool is needed to execute a 

task, and these dependencies need to be informed. With the information provided 

by all the rules, it is possible to proceed to the demand calculation. 

The demand calculation generates a report that shows the quantity needed for 

each tool and service for each day of the execution of the tasks in the rig schedule 

for each scenario. Based on these results, the demand for each scenario is 

aggregated, and statistical metrics are calculated, such as the percentiles 10% (P10), 

50% (P50), and 90% (P90), and mean, minimum, and maximum for each tool and 

service and each day of rig schedule. This helps decision-makers plan the contracts 

for these tools and services. Figure 5 shows an example of a graphical demand 

report for a particular tool, which is one of the outputs of the decision-making 

support tool. 

 

 

Figure 5: Graphical demand report example showing the calculation of the deterministic 

and stochastic demand of tools and services and its statistics, such as P10 and P90. 

To deal with the uncertainty that the tasks are subject to, the demand 

calculation is done stochastically, considering different rig schedule scenarios with 

different start dates and durations of tasks. Currently, the company uses a 

considerably large number of scenarios, 2000 to be specific, to do this estimation, 

which increases the complexity of the problem and leads to high computational 

times (approximately 8 hours) for the adequate calculation of demand. 
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3.1.1  
Data Extraction 

The data was obtained by the company’s system, with data from 2023 to 2028. 

Two main databases were collected: 

• The Deterministic Rig Schedule, with approximately 1800 tasks 

with start dates from 2023 to 2028, which represents the strategic 

planning period. 

• Scenarios: originated from the deterministic rig schedule, where 

task uncertainties were applied, generating different start dates and 

durations for the tasks. 

The Deterministic Rig Schedule contains the task identification number and 

their start date and duration. The Scenarios also contain this information for each 

of the 2000 scenarios. 

 

3.2  
Data Preparation 

After the data extraction, the data is prepared. This was an important step 

because the data extracted was not in the best format for the analysis proposed. The 

Deterministic Rig Schedule and the Scenarios data had information about the tasks, 

and this study needs information and statistics regarding the scenarios. 

We begin this process with the visualization of the data, more specifically, 

the visualization of the uncertainties presented in the data (start dates and duration), 

to better understand it. 

The Deterministic Rig Schedule was used as auxiliary data for the Scenarios. 

Firstly, information from the deterministic start dates and duration of the tasks was 

included in the Scenarios; then feature engineering was used to include two new 

features in the data: Difference in Start Date (between the deterministic schedule 

and the scenario) and Relative Change in Duration. These features are useful to 

better understand the uncertainty presented in the data regarding the start dates and 

durations. Table 2 shows the features used from each data and their description. 
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Table 2: Description of features 

Features Origin Description  

Task ID Scenarios 
Identification number of the 

task 

 

Scenario number Scenarios 
Identification number of the 

scenario 

 

Task Duration in Scenario Scenarios 
Duration of task in the 

scenario 

 

Task Start Date in Scenario Scenarios 
Start date of task in the 

scenario 

 

Deterministic Task Duration Deterministic Rig Schedule Deterministic Duration of task  

Deterministic Task Start Date Deterministic Rig Schedule Deterministic Start date of task  

Difference in Start Date  Feature Engineering |𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒𝑗𝑠 − 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒𝑗| (8) 

Relative change in Duration Feature Engineering 
𝑝𝑗𝑠

𝑝𝑗

 (9) 

 

In Equation (8), 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒𝑗𝑠 is the start date of the j task in scenario s, and 

𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒𝑗 is the deterministic start date of task j. In Equation (9),  𝑝𝑗𝑠 is the duration 

of task j in scenario s and 𝑝𝑗 is the deterministic duration of task j. 

Then, to obtain information about the scenarios, the data was grouped so that 

each row represented a scenario, and their statistics were calculated. The following 

statistics were obtained for each scenario: 

• Mean and Standard Deviation (Std) of the Tasks Duration. 

• Number of Tasks. 

• Minimum, Mean, Standard Deviation, Maximum, and 90% 

Percentile (p90) of the Tasks Relative change in Duration. 

• Mean Absolute Difference in Start Date (between the deterministic 

schedule and the scenario). 

• Number of Tasks that were brought forward and pushed back. 

• Number of Tasks that had duration decreased and increased. 

Moreover, to understand the changes in the scenario from the original 

deterministic schedule, two other features were included: the number of tasks that 

were brought forward and pushed back and the number of tasks that had duration 

decreased or increased. The first two indicate how many tasks had changes in their 

start date, whether they started earlier or later than initially scheduled, and the last 

two indicate how many tasks had their duration changed. This indicates how much 

the scenario changed from the deterministic schedule. 

In addition, a correlation analysis was performed using the Pearson 

Correlation to see if any of the features were highly correlated. A high correlation 
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was considered to be above 0.6 or below -0.6. With the results of the correlation 

analysis, redundant features were removed, and the final dataset was composed. 

 

3.3  
Modeling 

In the modeling step, we performed the scenario reduction using clustering 

methods, validated the results using metrics to evaluate the distance between 

distributions, and analyzed the impact of the reduction on our problem. This cycle 

was repeated as many times as needed to identify the best features and methods. 

 

3.3.1  
Clustering Methods 

Partitional and Hierarchical methods were applied to the database for scenario 

reduction: Two partitional methods, the K-Means and the K-Medoids, were 

selected. For the Hierarchical Methods, Agglomerative Clustering was used, 

varying their Linkage (Ward, Average, Single, and Complete). 

For the evaluation of the results, three evaluation metrics were used: the 

Silhouette Coefficient (ROUSSEEUW, 1987), the Davies-Bouldin score 

(DAVIES; BOULDIN, 1979), and the Calinski-Harabasz score (CALINSKI; 

HARABASZ, 1974). Table 3 summarizes the description of each evaluation metric. 
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Table 3: Summarization of the evaluation metrics 

Metric Description Interpretation 

Silhouette 

Coefficient 

A normalized summation type of index. Measures 

the cohesion of the clusters based on the distance 

between all the points in the same cluster and the 

separation based on the nearest neighbor distance. 

(ARBELAITZ et al., 2013) 

The higher the Silhouette 

Coefficient, the better the 

clustering. 

Davies-Bouldin 

score 

Calculates the cohesion of the clustering based on 

the distance from the points in a cluster to its 

centroid, and the separation is measured by the 

distance between the centroids. (ARBELAITZ et 

al., 2013) 

The lower the metric, 

ideally near zero, the better 

the clustering is considered. 

Calinski-

Harabasz score 

Estimates the cohesion of the clustering based on 

the distances from the points in the cluster to its 

centroid. The separation is measured by the 

distance from the centroids to the global centroid. 

(ARBELAITZ et al., 2013) 

A clustering is considered 

good if this metric has a 

high value. 

 

For the scenario reduction, the number of clusters for each method varied 

from 2 to 1999. In the first and second data science cycles, the best number of 

clusters will be selected by the Silhouette Coefficient. The other metrics were 

calculated accordingly. 

To obtain the subset of scenarios based on the results of each clustering 

method, the scenario with the lowest Euclidean distance from the centroid was 

selected to compose the subset of the representative scenarios. For the hierarchical 

clustering, which does not have the centroids as an attribute of the method, the 

centroids were calculated based on the nearest centroid. 

 

3.3.2  
Validation 

3.3.2.1 Statistical Validation 

The Wasserstein Distance was used to evaluate the goodness of fit of every 

feature’s distribution after the reduction in comparison to the original set of 

scenarios. The main use for this metric has been as a tool for statistical inference, 
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and it is a good measure for carrying out goodness-of-fit tests (PANARETOS; 

ZEMEL, 2019). 

This metric has been used as a discrepancy measure for the hierarchical 

clustering method to improve time aggregation performance (CONDEIXA; 

OLIVEIRA; SIDDIQUI, 2020), as a tool to select representative scenarios for 

stochastic programming (HEITSCH; MISCH, 2003), among other applications. 

The Wasserstein Distance was calculated for each feature, comparing it to the 

corresponding feature in the original set, and a Mean Wasserstein Distance was 

calculated for each clustering method. The lower the Mean Wasserstein Distance, 

the better the clustering method, as it means that the scenario reduction is 

statistically close to the original set. 

Moreover, a visualization of the features of the reduced dataset was made to 

compare to the 2000 scenarios using a density plot. We compared the distribution 

of each feature to the original dataset to evaluate the results of the scenario reduction 

further. 

 

3.3.2.2  
Output Analysis 

To analyze the impact of the scenario reduction in our problem, this validation 

consists of applying the reduction to the calculation of the demands for tools and 

services and comparing it to the original results using the 2000 scenarios. The 

clustering method with the lowest Mean Wasserstein Distance, based on the 

statistical validation, was selected for this analysis. We chose two groups of tools 

and services with a particular set of rules to perform this analysis. The first group 

refers to tools and services that are needed in fluid operations. The second one uses 

a group of tools and services for tasks that acquire geological data from the marine 

wells. 

Based on the demand calculation results from the scenario reduction and the 

original set, we calculated the daily demand average for each tool and then the 

absolute percentage error from the reduction to the original set results. Lastly, we 

calculated the Mean Absolute Percentage Error (MAPE) for the following statistics: 

P10, P50, P90, mean, minimum, and maximum. Bootstrap was applied to calculate 

the confidence interval of the MAPE, using 500 resamples. 
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3.4  
Representative Scenarios 

After defining the best clustering method for scenario reduction, our goal is 

to find the minimal representative set of scenarios for our problem. In other words, 

we want to obtain the minimal number of clusters where the distance between the 

set and the original scenarios is small enough to consider them a representative set 

for scenario reduction. 

We used the features and clustering method from the data modeling step and 

varied the number of clusters from 2 to 1999 clusters. For each number of clusters, 

we applied the clustering method and obtained the scenario reduction set, as 

described in section 3.3.1. For each feature of the subset, we normalized the data 

based on the original dataset, using the Min-Max Normalization, and calculated the 

Wasserstein distance. After analyzing all the features, we calculated the Mean 

Wasserstein Distance. 

As the number of clusters increases and approaches 2000, the Mean 

Wasserstein Distance becomes smaller, so the minimal representative subset would 

be selected when the change in the decreasing rate of the Wasserstein Distance is 

considerably small. The decreasing rate was calculated using the difference 

between the Mean Wasserstein Distance of 𝑛 number of clusters and 𝑛 − 1, and the 

change in the decreasing rate was calculated using the same difference in the 

decreasing rate. 

When the absolute change in the decreasing rate of the Mean Wasserstein 

Distance was smaller than a certain value (α), this means that the change is small 

enough, and this number of clusters is selected as the minimal representative subset. 

We selected an α of 10−4 and the flowchart of this algorithm is described in Figure 

6. 
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Figure 6: Find Minimal Representative Scenarios Algorithm 

After selecting the minimal representative set of scenarios, the same 

validation process described in Section 3.3.2 was performed, and the results were 

analyzed as part of the output analysis. 

The experiments detailed on this Chapter were performed on a computer with 

an Intel Core i7 3.6 GHz, 64 GB of RAM, Windows 10, and Python 3.11.3. Among 

the existing packages in Python, the main ones used in this study were scikit-learn, 

scipy, statsmodels, pandas, matplotlib, and seaborn. 
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4  
Results 

This chapter presents the results of the scenario reduction. First, we 

performed the steps described in the data preparation. Then, we applied clustering 

methods and evaluated the results. Lastly, the statistical validation was performed. 

 

4.1  
Data Preparation 

 

4.1.1  
Visualization of the data 

We visualized the uncertainty of the start dates and duration of tasks in Figure 

7 and Figure 8, to better understand them.  

 

Figure 7: Average number of Tasks for the Start Dates from Scenarios 

Figure 7 shows the average number of tasks for each month and year of the 

data. It is possible to see that between the end of 2023 and 2024, there is a higher 

number of tasks starting in comparison to the years that follow.  
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Figure 8: Average number of tasks for Duration from Scenarios 

Figure 8 shows the average number of tasks for each duration from the 

Scenarios. Most of the tasks present a duration from 10 to 40 days, while there are 

some tasks that present a higher duration, above 80 days. It is possible to see that 

some of the tasks present negative or zero duration, which are values not possible 

for this variable. In order to maintain these tasks in the database, those values were 

processed afterward. 

 

4.1.2  
Imputation 

Zero or negative values for task durations are not acceptable values since a 

task’s duration should always have a positive value. To avoid removing these 

registers from the database, we decided to input the median of the tasks that had 

positive values for the ones that had zero or negative durations. Tasks with zero or 

negative duration in all the scenarios were removed. Table 4 shows the total number 

of tasks and the median of their duration and start date for the dataset before and 

after the imputation. 

Table 4: Dataset before and after the imputation process 

Dataset Pre-Imputation Post Imputation 

Total Number of Tasks 2718212 2718212 

Duration 25 [16 - 40] 25 [16 - 40] 

Difference in Start Dates 5 [-13 - 73] 5 [-13 - 73] 

Number of tasks with negative duration 14 0 
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4.1.3  
Feature Engineering 

To obtain information about the changes from the scenarios to the 

Deterministic Rig Schedule, two features were included in the data: The Difference 

in Start Date and the Relative Change in Duration, defined in Section 3.2. In 

addition, the data was restructured to gather relevant information about each 

scenario. This was made by grouping it by scenario and calculating their statistics. 

Table 5 describes the features in the database after the grouping was done. 

Table 5: Statistics of the features grouped by Scenarios. 

Statistics by Scenario Median [Q1 – Q3] 

Task Duration (Mean) [days] 32.03 [31.83 - 32.23] 

Task Duration (Std) [days] 24.75 [24.47 - 25.03] 

Relative change in Duration (Min) 0.2 [0.13 - 0.2] 

Relative change in Duration (Mean) 0.98 [0.97 - 0.99] 

Relative change in Duration (Std) 0.33 [0.32 - 0.34] 

Relative change in Duration (Max) 3.67 [3.3 - 4.27] 

Relative change in Duration (p90) 1.28 [1.27 - 1.29] 

Number of Tasks 1362 [1350 - 1371] 

Absolute Difference in Start Date (Mean) 79.39 [77.54 - 81.52] 

Number of Tasks that were brought forward 390 [369 - 410] 

Number of Tasks that were pushed back 710 [687 - 732] 

Number of Tasks that had duration decreased 710 [697 - 723] 

Number of Tasks that had duration increased 479 [468 - 491] 

Q1: First quartile; Q3: Third Quartile 

From Table 5, we can see that most of the scenarios presented approximately 

1360 tasks, their average duration is 32 days, and the Absolute Difference in Start 

Date (Mean) for the scenarios is approximately 79 days. There are a higher number 

of tasks that were pushed back and had their duration decreased in comparison to 

tasks that were brought forward or had their duration increased. Regarding the 

Relative change in Duration, the mean, standard deviation, and 90% Percentile 

(p90) of the scenarios have a small interquartile range, while the minimum and 

maximum present a higher range of values. 
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4.1.4  
Feature Selection 

The Pearson correlation was applied to the database to identify highly 

correlated features. Figure 9 shows the results of the correlation analysis. 

 

Figure 9: Correlation Analysis of the features in the dataset 

Based on the results, it is possible to see which features are highly correlated 

with one another. We considered a high correlation to be above 0.6 or below -0.6. 

The Task Duration (Mean) and the Task Duration (Std) are highly correlated, and 

the first one is also correlated to the Relative Change in Duration (Mean). The latter 

is also highly correlated to The Relative Change in Duration (p90). The Relative 

Change in Duration (Max) is correlated to the Relative Change in Duration (Std). 

The Number of Tasks that were pushed back is also highly correlated to the Number 

of Tasks that were brought forward. The Number of Tasks that had duration 

increased is also highly correlated to the Task Duration (Mean). 

Based on the results of the correlation analysis, it was decided to remove 

highly correlated features. The final dataset is composed of the following features 

for each scenario: 

• Number of Tasks. 

• Minimum of the Relative Change in Duration. 
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• Mean of the Relative Change in Duration. 

• Maximum of the Relative Change in Duration. 

• 90% Percentile (p90) of the Relative Change in Duration. 

• Mean Absolute Difference in Start Date (between the deterministic 

schedule and the scenario). 

• Number of Tasks that were brought forward. 

• Number of Tasks that had duration decreased. 

Since the Maximum of the Relative Change in Duration and the 90% 

Percentile of the Relative Change in Duration are features that consider higher to 

extreme cases of relative changes in duration, we chose to perform two cycles of 

the internal cycle of data science, where the first contains the Maximum of the 

Relative Change in Duration and the second one contains the 90% Percentile of the 

Relative Change. Based on the results, we would select the best feature to consider 

in our problem. 

 

4.2  
First Internal Cycle of Data Science 

The first internal cycle of data science was performed using the following 

features: 

• Number of Tasks. 

• Minimum of the Relative Change in Duration. 

• Mean of the Relative Change in Duration. 

• Maximum of the Relative Change in Duration. 

• Mean Absolute Difference in Start Date (between the deterministic 

schedule and the scenario). 

• Number of Tasks that were brought forward. 

• Number of Tasks that had duration decreased 

 

4.2.1  
Clustering Methods 

The scenario reduction was performed using six clustering methods and 

evaluated with three evaluation metrics. Table 6 shows the results of the application 

of the clustering methods, varying the number of clusters from 2 to 1999. The best 

number of clusters was selected by the Silhouette Coefficient. 
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Table 6: Results of the scenario reduction in the first data science cycle 

Model 
Number of 

Clusters 

Silhouette 

Coefficient 

Davies-

Bouldin 

score 

Calinski-

Harabasz 

score 

K-Means 5 0.153 1.641 319.480 

K-Medoids 4 0.122 2.118 277.012 

Agglomerative 

Clustering (Ward) 
782 0.169 0.856 34.529 

Agglomerative 

Clustering (Average) 
3 0.358 0.995 70.425 

Agglomerative 

Clustering (Complete) 
745 0.153 0.857 33.755 

Agglomerative 

Clustering (Single) 
3 0.392 0.415 5.492 

 

The results of the clustering methods show that scenario reduction can be 

successfully made, as all the clusters obtained were below the original number of 

scenarios. It is possible to see that the methods showed two main results: a very low 

number of clusters or a higher number (near 750 clusters). The K-Means, K-

Medoids, Agglomerative Clustering with Average and Single Linkage resulted in a 

few clusters from 3 to 5, while Agglomerative Clustering with Ward and Complete 

Linkage resulted in 782 and 745 number of clusters, respectively. The method with 

the best Silhouette Coefficient and Davies-Bouldin score was the Agglomerative 

Clustering Single Linkage, while K-Means presented the best Calinski-Harabasz 

score. 

Even though some clustering methods obtained better evaluation metrics, we 

considered the number of clusters from these results to be extremely low and, thus, 

not statistically representative of the original scenarios. From a business 

perspective, if we reduce in this scale the number of scenarios, we could be 

removing important ones from the dataset. The other results, close to 750 clusters, 

seem more realistic and satisfactory for the scenario reduction. For these reasons, 

they were considered the best results from the clustering methods and chosen for 

the validation, along with the Agglomerative Clustering Single Linkage, which 

presented the best Silhouette Coefficient and Davies-Bouldin score. 
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4.2.2  
Validation 

Firstly, we compared the statistics from each group of scenarios to the original 

dataset, as shown in Table 7. 

Table 7: Comparison of the Original Scenario to the Reduction subsets in the first cycle 

Statistics 
2000 Scenarios 782 Scenarios 745 Scenarios 3 Scenarios 

Median [Q1 – Q3] Median [Q1 – Q3] Median [Q1 – Q3] Median [Q1 – Q3] 

Relative change in 

Duration (Min) 
0.2 [0.13 - 0.2] 0.2 [0.13 - 0.2] 0.2 [0.13 - 0.2] 0.26 [0.2 - 0.26] 

Relative change in 

Duration (Mean) 
0.98 [0.97 - 0.99] 0.98 [0.97 - 0.99] 0.98 [0.97 - 0.99] 0.99 [0.98 - 0.99] 

Relative change in 

Duration (Max) 
3.67 [3.3 - 4.27] 3.8 [3.33 - 4.47] 3.8 [3.33 - 4.53] 3.53 [3.1 - 4.23] 

Number of Tasks 1362 [1350 - 1371] 1362 [1348 - 1372] 1361 [1347 - 1372] 1359 [1313.5 - 1361.5] 

Absolute Difference in 

Start Date (Mean) 
79.39 [77.54 - 81.52] 79.61 [77.59 - 82.11] 79.69 [77.56 - 82.2] 88.1 [83.66 - 93.74] 

Number of Tasks that 

were brought forward 
390 [369 - 410] 390 [367 - 412] 390 [367 - 413] 364 [354.5 - 378] 

Number of Tasks that 

had duration decreased 
710 [697 - 723] 710 [695 - 723.75] 710 [695 - 724] 708 [680.5 - 709] 

Q1: First quartile; Q3: Third Quartile 

From the results shown in Table 7, we can see that the subset statistics for the 

782 and 745 scenarios are close to the original one, according to the Median and 

the First and Third Quantiles, while the subset with three scenarios presents a higher 

difference. 

Then, we calculated the Wasserstein Distance, comparing each feature from 

the reduction to the original set. The results of the Wasserstein Distance for these 

scenario reduction subsets are presented in Table 8. 
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Table 8: Wasserstein Distance for Scenario Reduction subsets of the first internal cycle of 

data science 

Features 
Wasserstein Distance 

782 Scenarios 745 Scenarios 3 Scenarios 

Relative change in Duration (Min) 0.012 0.014 0.132 

Relative change in Duration (Mean) 0.010 0.013 0.100 

Relative change in Duration (Max) 0.017 0.019 0.046 

Number of Tasks 0.015 0.019 0.200 

Absolute Difference in Start Date (Mean) 0.014 0.017 0.326 

Number of Tasks that were brought forward 0.011 0.015 0.126 

Number of Tasks that had duration decreased 0.010 0.014 0.139 

Mean Wasserstein Distance 0.013 0.016 0.153 

 

In Table 8, it is possible to see that, for the clustering with a higher number 

of scenarios, the Mean Wasserstein Distance is considerably lower than the one for 

the subset with three scenarios. Based on these results, we could confirm our 

assumption that the scenario reductions performed by the Agglomerative Clustering 

with Ward and Complete Linkage successfully found a subset of scenarios that are 

representative of the original 2000 ones. 

To further validate this, we plotted density plots for each subset and compared 

them to the original scenarios, as shown in Figure 10, Figure 11, and Figure 12. 

 

Figure 10: Density Plot of Original Scenarios (K=2000, color black) and Reduced 

Scenarios by Agglomerative Clustering Ward Linkage (K=782, color blue) 
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Figure 11: Density Plot of Original Scenarios (K=2000, color black) and Reduced 

Scenarios by Agglomerative Clustering Complete Linkage (K=745, color green) 

 

 

Figure 12: Density Plot of Original Scenarios (K=2000, color black) and Reduced 

Scenarios by Agglomerative Clustering Single Linkage (K=3, color red) 

 

From the density plots, it is possible to see that for the Ward and Complete 

subsets, the distributions for each feature are very similar to the 2000 scenarios 

originally used. For the Single subset, the distribution of the reduced subset and the 

original one presents considerable differences for most of the features, confirming 

that the other subsets are a better scenario reduction for this problem. 
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The Agglomerative Clustering with Ward Linkage presented the lowest Mean 

Wasserstein Distance and was selected for the analysis of the impact of the scenario 

reduction in the calculation of the demand for tools and services using the decision 

support system as part of the output analysis. The demand was calculated using the 

2000 scenarios and the 782 scenarios from the scenario reduction for the two groups 

of tools and rules mentioned in Section 3.3.2.2. Table 9 shows the results of the 

MAPE for each set and statistics from the calculation of the stochastic demand. The 

graphical visualization of the demand calculation for each tool and group is shown 

in APPENDIX II and APPENDIX III. 

Table 9: Mean Absolute Percentual Error (MAPE) of the 782 Scenarios using the 

Agglomerative Clustering with Ward Linkage compared to the 2000 Scenarios 

Statistics 
MAPE (%) - 782 Scenarios 

Group #1 Group #2 

Stochastic Demand - P10 0.47 [0.32 - 0.64] 1.62 [0.37 - 3.96] 

Stochastic Demand - P50 0.1 [0.06 - 0.14] 0.22 [0.15 - 0.29] 

Stochastic Demand - P90 0.19 [0.16 - 0.22] 0.35 [0.1 - 0.63] 

Stochastic Demand - Mean 0.04 [0.02 - 0.06] 0.2 [0.13 - 0.31] 

Stochastic Demand - Minimum 5.15 [4.57 - 5.67] 3.98 [2.34 - 5.53] 

Stochastic Demand - Maximum 4.85 [4.5 - 5.19] 3.79 [2.91 - 4.73] 

*95% confidence interval (percentile bootstrap with 500 resamples) 

It is possible to see that the MAPE for each statistic of the demand calculation 

of each set is low, below 6% error. This shows that the reduction is possible, 

maintaining the characteristics of the original set. In terms of performance, Table 

10 shows the execution time of the calculation of the demand for each set, the 

reduced subset, and the original set. 

Table 10: Comparison of the execution time of the demand calculation in the first cycle 

# Scenarios 
Execution time (hours) 

Group #1 Group #2 

2000 7.41 7.61 

782 2.73 2.83 

 

From Table 10, we conclude that using the subset of scenarios obtained from 

the scenario reduction, it is possible to reduce approximately 63% of the execution 

time in the calculation of the demand. 
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4.3  
Second Internal Cycle of Data Science 

The second internal cycle of data science was performed using the following 

features: 

• Number of Tasks. 

• Minimum of the Relative Change in Duration. 

• Mean of the Relative Change in Duration. 

• 90% Percentile (p90) of the Relative Change in Duration. 

• Mean Absolute Difference in Start Date. 

• Number of Tasks that were brought forward. 

• Number of Tasks that had duration decreased. 

 

4.3.1  
Clustering Methods 

The scenario reduction for this cycle was performed with the same clustering 

methods and evaluation metrics. Table 11 shows the results of the clustering 

methods. 

Table 11: Results of the scenario reduction in the second data science cycle 

Model 
Number of 

Clusters 

Silhouette 

Coefficient 

Davies-

Bouldin 

score 

Calinski-

Harabasz 

score 

K-Means 3 0.161 1.904 402.814 

K-Medoids 3 0.137 2.148 360.602 

Agglomerative 

Clustering (Ward) 
714 0.168 0.900 34.463 

Agglomerative 

Clustering (Average) 
3 0.325 0.841 11.090 

Agglomerative 

Clustering (Complete) 
880 0.152 0.796 32.778 

Agglomerative 

Clustering (Single) 
3 0.368 0.460 4.288 

 

As we saw in the first data science cycle, the methods showed similar results, 

maintaining a higher number of clusters for the Agglomerative Clustering with 

Ward and Complete Linkage and a very low number for the rest of the methods. 

The Agglomerative Clustering Single Linkage still was the method with the best 
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Silhouette Coefficient and Davies-Bouldin score, while the K-Means presented the 

best Calinski-Harabasz score. 

 

4.3.2  
Validation 

Following the same steps as the First Internal Cycle of Data Science, a 

statistical validation was performed, as well as the calculation of the Wasserstein 

Distance for each feature and the density plots. Details of the statistical validation 

are shown in APPENDIX I. 

The Agglomerative Clustering with Ward Linkage was also selected for the 

output analysis to observe the impact of the scenario reduction in the calculation of 

the demand for tools and services. Table 12 shows the results of the MAPE for each 

set and statistics from the calculation of the stochastic demand. The graphical 

visualization of the demand calculation for each tool and group is shown in 

APPENDIX IV and APPENDIX V. 

Table 12: Mean Absolute Percentual Error (MAPE) of the 714 Scenarios using the 

Agglomerative Clustering with Ward Linkage compared to the 2000 Scenarios 

Statistics 
MAPE (%) - 714 Scenarios 

Group #1 Group #2 

Stochastic Demand - P10 0.71 [0.61 - 0.83]* 2.42 [0.46 - 6.2] 

Stochastic Demand - P50 0.51 [0.31 - 0.84] 0.44 [0.2 - 0.74] 

Stochastic Demand - P90 0.21 [0.17 - 0.24] 0.19 [0.03 - 0.4] 

Stochastic Demand - Mean 0.03 [0.01 - 0.06] 0.15 [0.12 - 0.19] 

Stochastic Demand - Minimum 6.42 [5.78 - 7.06] 4.96 [2.66 - 7.12] 

Stochastic Demand - Maximum 5.46 [5.02 - 5.89] 4.01 [3.15 - 4.84] 

*95% confidence interval (percentile bootstrap with 500 resamples) 

 

In this cycle, the MAPE for each statistic of the demand calculation of each 

set is a little bit higher than the ones calculated in the first cycle but still low, with 

a higher value below 7% error. Performance-wise, Table 13 shows the execution 

time of the calculation of the demand for each set, the reduced subset, and the 

original set. 
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Table 13: Comparison of the execution time of the demand calculation in the second cycle 

# Scenarios 
Execution time (hours) 

Group #1 Group #2 

2000 7.41 7.61 

714 2.49 2.56 

 

Similar to what was concluded in the first cycle, using the subset of scenarios 

from the scenario reduction reduces more than 65% of the execution time in the 

calculation of the demand for this number of scenarios. 

 

 

4.4  
Representative Scenarios 

To find the minimal representative set of scenarios from the original set, we 

chose the clustering method and features that obtained the best performance based 

on the data modeling step. 

Based on the clustering results and the Mean Wasserstein distance calculated 

from each cycle, the Agglomerative Clustering with Ward Linkage using the 

features from the first cycle resulted in the lowest distance, being considered the 

best method from our results. 

As described in Section 3.4, the process of finding the minimal representative 

set of scenarios began by applying the clustering method, varying the number of 

clusters from 2 to 1999, and calculating the Mean Wasserstein Distance for each 

number of clusters. Figure 13 shows the decrease in this measure with the increase 

in the number of clusters. 
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Figure 13: Mean Wasserstein Distance by Number of Clusters for Agglomerative 

Clustering with Ward Linkage 

To identify the number of clusters where the decrease in the Mean 

Wasserstein Distance is small enough to be considered a minimal representative 

set, we calculated the decreasing rate and the change in the decreasing rate of this 

metric, and the absolute change in the decreasing rate is shown in Figure 14. 

 

Figure 14: Absolute change in decreasing rate of Mean Wasserstein Distance (the dashed 

line represents the 343 reduced scenario subset) 

Applying the steps of the algorithm in Figure 6, the first number of clusters 

where we have an absolute change in decreasing rate smaller than 10−4 is when the 

number of clusters is equal to 343 clusters. 

Following the same validation process, we compared the statistics from the 

scenario reduction with 343 clusters and the original dataset, as shown in Table 14. 

We also compared it to the scenario reduction subset from the best clustering 

method in the first internal data science cycle, which has the same features as the 

minimal representative subset. 



  56 

 

Table 14: Comparison of the Original Scenario to the Minimal Representative Subset 

Statistics 
2000 Scenarios 782 Scenarios 343 Scenarios 

Median [Q1 – Q3] Median [Q1 – Q3] Median [Q1 – Q3] 

Relative change in 

Duration (Min) 
0.2 [0.13 - 0.2] 0.2 [0.13 - 0.2] 0.2 [0.13 - 0.2] 

Relative change in 

Duration (Mean) 
0.98 [0.97 - 0.99] 0.98 [0.97 - 0.99] 0.98 [0.97 - 0.99] 

Relative change in 

Duration (Max) 
3.67 [3.3 - 4.27] 3.8 [3.33 - 4.47] 3.8 [3.33 - 4.55] 

Number of Tasks 1362 [1350 - 1371] 1362 [1348 - 1372] 1361 [1348 - 1372] 

Absolute Difference in 

Start Date (Mean) 
79.39 [77.54 - 81.52] 79.61 [77.59 - 82.11] 79.73 [77.83 - 81.77] 

Number of Tasks that were 

brought forward 
390 [369 - 410] 390 [367 - 412] 389 [368 - 412.5] 

Number of Tasks that had 

duration decreased 
710 [697 - 723] 710 [695 - 723.75] 709 [695 - 724] 

Q1: First quartile; Q3: Third Quartile 

As we can see from Table 14, the statistics from the minimal representative 

subset are similar to the original scenario one but slightly farther from the original 

subset in comparison to the 782 for some features, such as the Number of Tasks or 

the Absolute Difference in Start Date (Mean). This is expected, as we are 

considering fewer scenarios. Figure 15 shows the visual comparison of each feature 

from the minimal representative subset with the original set. 

 

Figure 15: Density Plot of Original Scenarios (K=2000, color black) and Minimal 

Representative Subset Scenarios (K=343, color purple) 

As seen in the results from the first and second data science cycles, Figure 15 

shows that the features from the reduced subset are very similar to the original 
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dataset. This further validates that reduction can maintain the statistical 

characteristics of the distribution, even for a reduced set of scenarios. 

To analyze the impact of this scenario reduction in the demand calculation, 

we applied this subset to the same group of tools and services previously used in 

the validation. Table 15 shows the results of the MAPE for each group and statistics 

from the calculation of the stochastic demand. The graphical visualization of the 

demand calculation for each tool and group is shown in APPENDIX VI and 

APPENDIX VII.  

Table 15: Mean Absolute Percentual Error (MAPE) of the 343 Scenarios compared to the 

2000 Scenarios 

Statistics 
MAPE (%) - 343 Scenarios 

Group #1 Group #2 

Stochastic Demand - P10 1.69 [1.4 - 2]* 1.54 [0.47 - 3.37] 

Stochastic Demand - P50 0.28 [0.12 - 0.56] 0.54 [0.28 - 0.92] 

Stochastic Demand - P90 0.22 [0.17 - 0.27] 0.47 [0.17 - 0.82] 

Stochastic Demand - Mean 0.12 [0.1 - 0.15] 0.3 [0.22 - 0.42] 

Stochastic Demand - Minimum 11.03 [9.83 - 12.16] 9.55 [5.45 - 13.48] 

Stochastic Demand - Maximum 10.48 [9.56 - 11.39] 8.14 [6.49 - 9.93] 

*95% confidence interval (percentile bootstrap with 500 resamples) 

As expected, the lower the number of scenarios used for the calculation of the 

demand, the higher the error obtained from the results. Nonetheless, the MAPE of 

the demand calculation from the 343 subset is still low for most of the statistics, 

having the highest value of 11%. In terms of execution time, Table 16 shows the 

execution time for each group, using the minimal representative scenarios subset 

and the original set. 

Table 16: Comparison of the execution time of the demand calculation using the minimal 

representative subset 

# Scenarios 
Execution time (hours) 

Group #1 Group #2 

2000 7.41 7.61 

343 1.18 1.26 

 

As we can see from Table 16, the use of the minimal representative subset of 

scenarios reduces considerably, approximately 84%, the execution time of the 



  58 

demand calculation. This alternative allows decision-makers to have faster demand 

results and run the calculation more times, if necessary. 
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5  
Discussion 

The proposed methodology followed the steps of data preparation, modeling, 

and the search for a representative scenarios’ subset for the scenario reduction. 

Using clustering-based methods, the number of clusters obtained varied from a very 

small number for some methods to a higher amount for others. In the process of 

validating these results and comparing them to the original set of scenarios, it was 

concluded that the methods with a higher number of clusters were statistically closer 

to the original set and thus considered a better fit for our problem. 

The Agglomerative Clustering with Ward Linkage obtained better evaluation 

metrics and was closer to the original set according to the Wasserstein Distance, so 

it was selected as the best method, with 782 clusters. This reduction resulted in a 

reduction in the execution time of the demand calculation by approximately 63%, 

with an error below 6%. 

Using this clustering method to find the minimal representative scenario 

subset, it is possible to reduce the number of clusters even further to 343 clusters. 

Considering that the processing time of the data is rather small, of approximately 5 

minutes, this represents a reduction of the execution time of the demand calculation 

of 84%, with the highest mean absolute percentual error of 11%. Even though the 

error is slightly higher, the reduction in the execution time allows decision-makers 

to have faster demand results and more flexibility to test different tools and service 

options and set of rules for the schedule and analyze their impact on demand. 

As mentioned in Section 2.3, Vieira (2021) also proposed a methodology for 

selecting scenarios for the stochastic calculation of the demand for tools and 

services for well-construction tasks performed by offshore rigs. The Set Covering 

Problem was used to select the scenarios and solved in its classic version using an 

exact algorithm and a heuristic algorithm. 

Their methodology consisted of acquiring the main characteristics of the 

scenarios, calculating the distances between the scenarios and the graph 

characterization using the Gower distance, and pruning the graph based on a 
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maximum distance allowed (cutoff) to limit the solution space. Then, the coverage 

sets are defined, and the algorithm of the Set Covering Problem is applied. The last 

step is to assign weights to the representative scenarios based on their representation 

potential (VIEIRA, 2021). 

Using this methodology to perform the scenario reduction for a set with 3000 

scenarios, Vieira (2021) obtained a reduction subset with 270 scenarios, using a 

cutoff of 0.075. This was a 91% reduction in terms of data processed for the 

calculation of the demand, reducing only 5% of the assertiveness in the group of 

tools and services used to analyze the results. 

The methodology presented by Vieira (2021) and the one in this study are 

both able to perform successful scenario reductions for this problem, with little 

assertiveness loss, being possible options for the solution of this problem. Vieira 

(2021) presented a limitation in the validation of the methodology, as they were not 

able to perform a statistical validation due to the original scenarios’ distributions 

being unknown. This was overcome in our methodology because, even though the 

distributions were still unknown, a statistical validation was performed using the 

Wasserstein metric and visualization tools in order to select representative scenarios 

in our reduction. 

Moreover, Meira et al (2016) also proposed a methodology for scenario 

reduction to identify representative scenarios in oil fields. To perform the scenario 

reduction, they used optimization methods, and a mathematical function that 

modeled the representativeness of the scenarios. This was implemented in a tool 

called RMFinder, which iterates to find a good set of parameters for the set of 

models in the problem and searches for the set of representative models to minimize 

their overall cost. Similarly, we proposed an iterative algorithm to find a minimal 

representative set of scenarios. This was achieved increasing the number of clusters, 

applying the scenario reduction using clustering methods, and calculating the 

representativeness metric, which was the Mean Wasserstein Distance, and stopping 

once the improvement of this metric was too small. 
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6  
Conclusion 

The construction and maintenance of marine wells are essential parts of oil 

exploration and production. Operations such as drilling, assessment, completion, 

and workover performed by offshore rigs need tools and services to be executed, 

which is why material resource planning is an important part of the planning of the 

rig's schedule. Moreover, there are uncertainties present in the operation, as the 

tasks' start dates and duration are often different from what was initially planned, 

which needs to be taken into consideration for a better estimation of the demand for 

tools and services. 

This work aimed to reduce the number of scenarios used to calculate the 

demand for tools and services for well construction tasks of a large Oil and Gas 

company, finding the most representative ones using clustering-based methods and 

statistical analysis. The methodology proposed in this study followed three main 

steps: preparation of the data, modeling using clustering methods, and finding the 

representative scenarios. The clustering method that obtained the best results was 

Agglomerative Clustering with Ward Linkage, using the features from the first 

internal data science cycle. Even though this method did not result in the best 

Silhouette Coefficient (0.169), it had the lowest Mean Wasserstein Distance (0.013) 

in the statistical validation, thus being considered the best method with 782 clusters. 

Using this reduction in the calculation of the demand for tools and services provided 

a 63% reduction in the execution time of the demand, with a maximum MAPE of 

approximately 5% in comparison to the demand calculated with the original 

scenarios. 

We used the best clustering method and features to find a minimal 

representative set of scenarios for our scenario reduction. Using the Mean 

Wasserstein Distance and analyzing the change in the decreasing rate, the algorithm 

to find this subset resulted in a reduction to 343 clusters. This subset reduced the 

execution time of the demand calculation for tools and services by approximately 

84%, with the highest MAPE of 11% for the minimum statistic. 
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Scenario reduction in this context is important for the company in question, 

as it can help streamline decision-making and the planning of tool and services 

contracts. As the demand calculation is subject to the group of tools and set of rules 

that the user wants to evaluate, the decision maker can calculate the demand more 

times a day or test more tools and rules to be able to correctly estimate the demand 

for tools and services, according to their knowledge of the business. 

The limitations presented in this study include the subjectivity in the 

calculation of the demand, which requires human input for the selection of tools 

and services, as well as rules for the allocation, maintenance and dependence 

conditions, and logistic parameters, one of the limitations. Due to these conditions, 

it is not possible to evaluate the methodology in every group of tools and set of 

rules, and our results focus on only two cases. In future research, we propose the 

application of the methodology in other examples of groups of tools and rules and 

performing the validation of the scenario reduction with other statistical metrics. 
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APPENDIX I – Statistical Validation of the Second Internal Cycle of 
Data Science  

 

Firstly, we compared the statistics from each group of scenarios to the original 

dataset, as shown in Table 17. 

Table 17: Comparison of the Original Scenario to the Reduction subsets in the second cycle 

Statistics 
2000 Scenarios 714 Scenarios 880 Scenarios 3 Scenarios 

Median [Q1 – Q3] Median [Q1 – Q3] Median [Q1 – Q3] Median [Q1 – Q3] 

Relative change in 

Duration (Min) 
0.2 [0.13 - 0.2] 0.2 [0.13 - 0.2] 0.2 [0.13 - 0.2] 0.13 [0.13 - 0.17] 

Relative change in 

Duration (Mean) 
0.98 [0.97 - 0.99] 0.98 [0.97 - 0.99] 0.98 [0.97 - 0.99] 0.97 [0.97 - 0.98] 

Relative change in 

Duration (p90) 
3.67 [3.3 - 4.27] 1.28 [1.27 - 1.29] 1.28 [1.27 - 1.29] 1.27 [1.26 - 1.3] 

Number of Tasks 1362 [1350 - 1371] 1361 [1347 - 1371] 1361 [1347 - 1371] 1364 [1361 - 1372] 

Absolute Difference in 

Start Date (Mean) 
79.39 [77.54 - 81.52] 79.49 [77.45 - 81.98] 79.49 [77.41 - 81.96] 94.79 [88.3 - 97.09] 

Number of Tasks that 

were brought forward 
390 [369 - 410] 389 [367 - 411] 389.5 [367 - 411] 349 [347 - 370] 

Number of Tasks that 

had duration decreased 
710 [697 - 723] 710 [694.25 - 723] 709 [695 - 724] 710 [709.5 - 739.5] 

Q1: first quartile; Q3: third quartile 

 

As seen in Table 17 the results are similar to the ones observed in the first 

cycle, where the subsets statistics for the 714 and 880 scenarios are extremely close 

to the original one, according to the Median and the First and Third Quantiles, while 

the subset with 3 scenarios presents a higher difference. 

The Wasserstein Distance for these scenario reduction subsets are presented 

in Table 18. 
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Table 18: Wasserstein Distance for Scenario Reduction subsets of the second cycle 

Features 
Wasserstein Distance 

714 Scenarios 880 Scenarios 3 Scenarios 

Relative change in Duration (Min) 0.016 0.014 0.108 

Relative change in Duration (Mean) 0.013 0.014 0.090 

Relative change in Duration (p90) 0.016 0.019 0.185 

Number of Tasks 0.018 0.017 0.065 

Absolute Difference in Start Date (Mean) 0.012 0.013 0.436 

Number of Tasks that were brought forward 0.011 0.012 0.153 

Number of Tasks that had duration decreased 0.013 0.014 0.142 

Mean Wasserstein Distance 0.014 0.014 0.168 

 

These results are also similar to the ones observed in the first cycle, where the 

clustering with a higher number of scenarios have a lower metric than the subset 

with 3 scenarios, which indicates that they are a better scenario reduction subset for 

our original scenarios. 

We also plotted density plots for each subset and compared them to the 

original scenarios to validate our findings, as shown in Figures 16, 17 and 18. 

 

Figure 16: Density Plot of Original Scenarios (K=2000, color black) and Reduced 

Scenarios by Agglomerative Clustering Ward Linkage (K=714, color blue) 
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Figure 17: Density Plot of Original Scenarios (K=2000, color black) and Reduced 

Scenarios by Agglomerative Clustering Complete Linkage (K=880, color green) 

 

 

Figure 18: Density Plot of Original Scenarios (K=2000, color black) and Reduced 

Scenarios by Agglomerative Clustering Single Linkage (K=3, color red) 

As observed in the first cycle, the density plot shows similar results, where it 

is possible to see that for the Ward and Complete subsets, the distributions for each 

feature are very similar to the 2000 scenarios originally used, and for the Single 

subset, the differences between distributions are more noticeable. 
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APPENDIX II – Comparison of P50 of Demand Calculation for Original 
Set and 782 Scenarios for Group 1 
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APPENDIX III – Comparison of P50 of Demand Calculation for 
Original Set and 782 Scenarios for Group 2 
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APPENDIX IV – Comparison of P50 of Demand Calculation for 
Original Set and 714 Scenarios for Group 1 
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APPENDIX V – Comparison of P50 of Demand Calculation for Original 
Set and 714 Scenarios for Group 2 
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APPENDIX VI – Comparison of P50 of Demand Calculation for 
Original Set and 343 Scenarios for Group 1 
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APPENDIX VII – Comparison of P50 of Demand Calculation for 
Original Set and 343 Scenarios for Group 2 
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